MATHEMATICS

MATERIAL FOR GRADE 12

HIGH FLYERS

SESSION 5 TRIGONOMETRY

QUESTIONS

90 minutes

QUESTION 1

- 1.1 Draw the graph of $h(x) = \sin 2x \cos 2x$ for $-90^\circ \le x \le 180^\circ$. (4)
- 1.2 The diagram below shows the graphs of $f(x) = \cos x + 1$ and $g(x) = \sin 2x$, for $0^{\circ} \le x \le 360^{\circ}$. Use it to find the approximate general solution to $2\sin x \cos x = \cos x + 1$. (3)

QUESTION 2: Solving trig equations

3.1

Evaluate:

2.1	Find the general solution of $sin^2\beta + sin 2\beta = 1$, where $cos \beta \neq 0$	(4)
-----	---	-----

QUESTION 3: Miscellaneous manipulations and calculations

211 - 22150 - 22150				
$211 - 2^{2}150 - 2^{2}150$				
211 - 221 = 21 = 21 = 21 = 21 = 21 = 21				
2.1.1 $2.1.1$ $2.1.1$				
211 = -2150 = -2150				
211 - 22170 - 22170				
	0 1 1			
	211	coc^{4} lb^{9} cin^{4} lb^{9}		

$$\begin{array}{ll} 3.1.1 & \cos^2 15^\circ - \sin^2 15^\circ \\ 3.1.2 & \sin 105^\circ \end{array} \tag{3}$$

- 3.2 If $\sin 21^\circ = a$, express the following in terms of a.
 - i. $\cos 42^{\circ}$ (3) ii. $\sin 81^{\circ}$ (3)
- 3.3 If $\sin 22^\circ \cos 12^\circ = a$ and $\sin 12^\circ \cos 22^\circ = b$, express $\sin 34^\circ$ in terms of a and b. (2)

QUESTION 4: Simplifying expressions / algebraic manipulations

4.1 Simplify the following to a single trig ratio:

$$\sin\left(\frac{\beta}{2} + 45^{\circ}\right) \cdot \cos\left(\frac{\beta}{2} + 45^{\circ}\right) \tag{3}$$

4.2 Simplify the following without using a calculator:

$$\frac{\cos(45^\circ - \theta)}{\cos 45^\circ \cos \theta} - \tan \theta \tag{5}$$

QUESTION 5: Proving identities

5.1 Prove that: $\sin 2x + 2\sin^2 (45^\circ - x) = \sin^2 x + \cos^2 x$ (4)

5.2 Hence show that:
$$\sin^2 15^\circ = \frac{2-\sqrt{3}}{4}$$
 (3)

5.3 Given: $\sin\theta \cdot \cos\beta = -1$

5.3.1	Write down the maximum and minimum value of $\cos\beta$.	(2)
5.3.2	Solve for $\theta \in [0^{\circ}; 270^{\circ}]$ and $\beta \in [-180^{\circ}; 90^{\circ}]$.	(6)

QUESTION 6

AB is a vertical tower of *p* units high.

D and C are in the same horizontal plane as B, the foot of the tower.

The angle of elevation of A from D is x. $B\hat{D}C = y$ and $D\hat{C}B = \theta$.

The distance between D and C is *k* units.

6.1.1 Express p in terms of DB and x.

6.1.2 Hence prove that:
$$p = \frac{k \sin \theta \tan x}{\sin y \cos \theta + \cos y \sin \theta}$$
 (5)

6.2 Find BC to the nearest meter if $x = 51,7^{\circ}$, $y = 62,5^{\circ}$, p = 80 m and k = 95 m. (4)

(5)

QUESTION 7

In the diagram below, D, B and C are points in the same horizontal plane. AC is a vertical pole and the length of the cable from D to the top of the pole, A, is *p* meters. AC \perp CD. A $\widehat{D}C=\theta$;

 $D\widehat{C}B = (90^\circ - \theta)$ and $C\widehat{B}D = 2\theta$.

7.1 Prove that:

$$BD = \frac{p\cos\theta}{2\sin\theta}$$

7.2 Calculate the height of the flagpole AC if $\theta = 30^{\circ}$ and p = 3 meters. (3)

7.3 Calculate the length of the cable AB if it is further given that $ADB = 70^{\circ}$	(5)
---	-----

[13]