MATHEMATICS

MATERIAL FOR GRADE 12

HIGH FLYERS

SESSION 5 TRIGONOMETRY

Q U E S T I O N S

90 minutes

QUESTION 1

1.1 Draw the graph of $h(x)=\sin 2 x-\cos 2 x$ for $-90^{\circ} \leq x \leq 180^{\circ}$.
1.2 The diagram below shows the graphs of $f(x)=\cos x+1$ and $g(x)=\sin 2 x$, for $0^{\circ} \leq x$ $\leq 360^{\circ}$. Use it to find the approximate general solution to $2 \sin x \cos x=\cos x+1$. (3)

QUESTION 2: Solving trig equations

2.1 Find the general solution of $\sin ^{2} \beta+\sin 2 \beta=1$, where $\cos \beta \neq 0$

QUESTION 3: Miscellaneous manipulations and calculations
3.1 Evaluate:
3.1.1 $\cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ}$
3.1.2 $\sin 105^{\circ}$
3.2 If $\sin 21^{\circ}=\mathrm{a}$, express the following in terms of a.
i. $\quad \cos 42^{\circ}$
ii. $\quad \sin 81^{\circ}$
3.3 If $\sin 22^{\circ} \cos 12^{\circ}=\mathrm{a}$ and $\sin 12^{\circ} \cos 22^{\circ}=\mathrm{b}$, express $\sin 34^{\circ}$ in terms of a and b .

QUESTION 4: Simplifying expressions / algebraic manipulations
4.1 Simplify the following to a single trig ratio:

$$
\begin{equation*}
\sin \left(\frac{\beta}{2}+45^{\circ}\right) \cdot \cos \left(\frac{\beta}{2}+45^{\circ}\right) \tag{3}
\end{equation*}
$$

4.2 Simplify the following without using a calculator:

$$
\begin{equation*}
\frac{\cos \left(45^{\circ}-\theta\right)}{\cos 45^{\circ} \cdot \cos \theta}-\tan \theta \tag{5}
\end{equation*}
$$

QUESTION 5: Proving identities

5.1 Prove that: $\sin 2 x+2 \sin ^{2}\left(45^{\circ}-x\right)=\sin ^{2} x+\cos ^{2} x$
5.2 Hence show that: $\sin ^{2} 15^{\circ}=\frac{2-\sqrt{3}}{4}$
5.3 Given: $\sin \theta \cdot \cos \beta=-1$
5.3.1 Write down the maximum and minimum value of $\cos \beta$.
5.3.2 Solve for $\theta \in\left[0^{\circ} ; 270^{\circ}\right]$ and $\beta \in\left[-180^{\circ} ; 90^{\circ}\right]$.

QUESTION 6

$A B$ is a vertical tower of p units high.
D and C are in the same horizontal plane as B, the foot of the tower.
The angle of elevation of A from D is $x . \mathrm{B} \widehat{D} C=y$ and $\mathrm{D} \hat{C} \mathrm{~B}=\theta$.
The distance between D and C is k units.

6.1.1 Express p in terms of DB and x.
6.1.2 Hence prove that: $p=\frac{k \sin \theta \tan x}{\sin y \cos \theta+\cos y \sin \theta}$
6.2 Find BC to the nearest meter if $x=51,7^{\circ}, y=62,5^{\circ}, p=80 \mathrm{~m}$ and $k=95 \mathrm{~m}$.

QUESTION 7

In the diagram below, D, B and C are points in the same horizontal plane. AC is a vertical pole and the length of the cable from D to the top of the pole, A , is p meters. $\mathrm{AC} \perp \mathrm{CD} . \mathrm{A} \widehat{\mathrm{C}}=\theta$;
$\mathrm{D} \widehat{\mathrm{C}} \mathrm{B}=\left(90^{\circ}-\theta\right)$ and $\mathrm{C} \widehat{\mathrm{BD}}=2 \theta$.

7.1 Prove that:

$$
\begin{equation*}
\mathrm{BD}=\frac{p \cos \theta}{2 \sin \theta} \tag{3}
\end{equation*}
$$

7.2 Calculate the height of the flagpole AC if $\theta=30^{\circ}$ and $p=3$ meters.

7.3 Calculate the length of the cable AB if it is further given that $\mathrm{A} \widehat{\mathrm{D}} \mathrm{B}=70^{\circ}$

